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THE THREE-NUCLEON PROBLEM:
1) Trinucleon Bound States
2) Trinucleon Interactions -

J. L. Friar

Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545 USA

ABSTRAC1

The assumptions underlying the formulation and solution of the
Schrodinger equation for three nucleons in tonfiguration space are
reviewed, in conjunction with those qualitative aspects of the two-
nucleon problem which are important. The geometrical features of the
problem and the crucial role of the angular mementum barrier are
developed. The boundary conditions for scattering are discussed quali-
tatively, and the Faddeev-Noyes equation is motivsted. The method of
splines and orthogonal collocation are shown to provide convenieat
techniques for generating numerical solutions. Properties of the many
nunerical solutions for the bound states and zero-energy scattering states
are discussed. The evidence for three-body forces is reviewed, and the
results of the recent calculations including such forces are discussed.
The importance of electromagnetic interactions in the three-nucleon
systems 18 motivated. Relativistic corrections and meson-exchange currents
are discussed in the context of "rules of scsle", and the pion-exchange
currents c¢f norrelativistic order are derived. The experimental results
for trinucieon electromagnetic interactions are reviewed, including recent
tritiun data. Conclusions are presented.
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LECTURE 1. TRINUCLEON BOUND STATES

I. INTRODUCTION
The four bound few-nucleon systems (2H, 3H, 3He, %He) have played

a role in nuclear physics far out of proportion to their abundance on
earth, and their study constitutes one of the cldest and most important
subfields of our discipline. In one of the first review articles(l)
treating nuclear physics, & separate section was reserved for the
three-nucleon problem. Since that time many such articles have been
written.

The special importance of these four nuclei stems from the great
difficulty in solving the many-body problem. Special techniques exist
for solving that problem when the number of particles becomes huge, a
limit of no obvious relevance to nuclear physics. On the other hand we
can also solve "exactly" (in the numerical sense) well-posed model
problems with fou. or fewer nucleons. Our lack of ability to construct
from first principles a tractable Hamiltonian for the interaction of a
single pair of nucleons which describes all the phenomena associated
with this system means that we routinely use semiphenomenological
Hamiltonians, which incorporate physical constraints and some para-
meters which are fitted to two-nucleon experimental data. Thus, the
three- and four-nucleon systems constitute a special testing ground for
nav ideas and concepts in nuclear physics, simply because we can solve
for their wave functions and because their properties have uot been
incorporated into our Hamiltonian models.

0f particular importance to us here is the electromagnetic inter-
action. Like the few-nucleon problem, electromagnetism is a relatively
"clean" field, with constraints produced by fundamental principles, and
with a small coupling coastant which makes complicated physical
processes contribute only weakly. Thus, electromagnetic interaction
results are "interpretable", particularly if wave functions are
accurately known. This does not imply that our work is "cut and dried",
with little room for innovation. Quite to the contrary, because so
much is known, electromagnetic interactions in few=body systems are
the vlace to look for "exotic" phenomena. Because the technical
aspects of the few-nucleon problem tend to obscure the many simple



results, we will concentrate in the first lecture on understanding why
three-body calculations are done the way they are, in what sense they
are complicated, and in what sensec they are not complicated. In the
second lecture we will concertrate on electromagnetic interactions
involving three nucleons and other topics, including three-body forces.

Although much of the modern work in this field is forrulated in
momentum space, most of the older work and the work described in this
lecture were formulated in configuration space (CS). Many techniques
have been used to calculate CS wave functions, beginning with the

)

work in configuration space? In our case the answer is simple: our

august Rayleigh-Ritz variational principle Why do we and others
physical intuition and insight are greatest there. There are, however,
distinct advantages to momentum space for certain problems, such as
relativistic treatments of few-nucleon systems. In what follows we will
emphasize =lmost exclusively the bound few-nucleon systems in con-
figuration space, and the approach of the Los Alamos-Iowa collaboration
to solving the Schrédinger equation for these lYltenl(z).

II. QUALITATIVE ASPECTS

No discussion of the three-nucleon problem is complete without a
schematic discussion of the two-nucleon Hamiltonian. Many of the de-
tailed quantitative features are irrelevant, while a few seemingly
unimportant qualitative featuras determine most of the trinucleon
properties.

The key underlying assumption is that few=-nuc . 5. dynamics is non-
relativistic. This important simplification relies on the fact that
typical values of mesn internal nuclear momenta, p, are 100-200 MeV/c,
snd thus [v/c¢)? = (B/Hc)' for a nucleon of mass Mc2=939 MeV is one-few
percent. BSince (v/c)? gives the scale of relativistic corrections,
this estimate would indicate that a nucleus is largely nonrelativistic.
The argument hides the fact that short-range potentials can be very
strong and induce local momenta which are correspondingly large; the
estimate above should only be interpreted as "in the mesn". Moreover,
our potential models "hide" the effects of relativity in the phenom-
enclogical parts, because parameters are fit to data.



There are three salient features of the two-nucleson potential
which drastically, and unfavorably, affect cur ability to solve the
few-nucleon Schrédinger equation. These are:

(1) Forces between like nucleons (e.g., pp or nn) are weaker
than the forces between unlike nucleons (np),

(2) The two-nucleon spin-triplet potential contains a strong
tens>r force which couples neighboring orbital waves;

(3) The short-range force exhibits very strong repulsion,
vhich makes the probability of nucleon-nucleon overlap
at short distances very small.

Without these complications the few-nucleon Schrodinger equation is
quite easy to solve. Feature (1) induces important spin and isospin
correlations in the wave function. If the forces between all particles
were identical, only a single (different) scalar function of the
particle separations would describe each of the few-nucleon systems.
With a tensor force present, the deuteron wave function has a tensor
(d-wave) component, as do the triton and a-particle, which greatly
complicates solving the Schrodinger equation. A strong short-range
repulsion produces "holes" in the wave function. These holes must be
accurately generated in any solution, which is thus rendered con-
siderably more difficult.

In addition to these qualitative aspects of the nucleon-nuclecn
force, we note also that the odd-parity nucleon-nucleon partial waves
(e.g., 1Pl, 3Po’1'2) are relatively weak, and we will see later that
they play s very small role in the triton.

A few basic principles motivate the procedures used to solve
n.merically various three-body problems. These are:

(1) Nuclei (including the triton) are~ weakly bound, and
average momenta are consequently small compared to the
nucleoi mass;

(2) 1In the triton the average momentum is comparable to the
inverse of the radius (R) and consequently the angular
momentum barrier suppresses high partial waves of the
nucleon-nucleon force;

(3) Uulike the case of heavy nuc.ei, the Pauli principle
doesn't play s particularly large role;

(4) The details of t!.> force are relatively unimportant in
the overall bind: ‘g, clthough they can severely com-
plicate achieving a solution.



As we previously discussed, a nonrelativistic treatment of the triton
should suffice, as indicated by (1). One estimate of the average
momentum is p = Jﬁﬁ; = ¥, where E, = 8.5 MeV is the binding energy,
and consequently, p £ 90 MeV/c. A typical trinucleon size is 2 fm, so
that iR ~ 1. Becauae Bessel functions of argument z and order £ peak
for z > £, it is clear that the angular momentum barrier will greatly
suppress orbital angular momenta greater than 2 in the triton.
I1I. GEOMETRICAL ASPECTS

The geometry of the triten illustrates the greater difficulty in
solving the Schrodinger equation for the triton compared to the
deuteron. The deuteron is described by a single vector T separating the
nucleons, and only its magnitude is relevant for a description of the
two scalar functions, u(r) and w(r), which determine the s-wave and
d-wave parts of the wave function. Figure 1 shows the triton, where we
have arbitrarily numbered the nucleons. Three points define a plane
and thus only two vectors, ;1, and ;1, describe the systam. Because
the orientation of the plane is arbitrary, only three independent
interparticle coordinates (xl, Yy» 61) are ::quired to specify the wave
function. Our choice of vectors is arbitrary, however, since any set
of the Jacobi coordinates formed from the nucleon coordinates ;i (i, i,
k cyclic) is adequate:

> _ 2 3 ‘
Y T (1)
¥y = 3G T (2)

Clearly the sums of the ;i or ;i vanish and they are linearly
dependent. Traditionally, the set (;l’;l) is relabelled as (?,;),
where X and ; are denoted the "interacting pair" and "spectator"

(3)

Group theoretical methods

coordinates, respectively
(4) are used to classify in a well-
defined way the wave function components which can occur for the
positive parity, spin-} trinuclevns. Most of the important qualitative
aspects of this scheme are rather obvious, however. Like the deuteron,
the principal triton wave function component is s-wave in character.
However, because there are several coordinates describing the problem,



this can be further broken down into three distinct categories: (1)
the S-state, completely symmetric under the interchange of apatial
coordinates (i.e., the ;i); (2) the S '-state, which has mixed spatial
symmetry (neither symmetric nor antisymmetric); (3) the S”°-state which
has spatial antisymmetry. The last state has negligible size because
the antisymmetry requires very large momentum components, which are
lacking in the ground state, and because it is generated by the weak
odd-parity nucleon-nucleon forces. The S°-state vanishes when the np,
nn, and pp forces are identical, and for this reason it can be viewed
as a space-isospin-(spin) correlation in the ground state. Its
physical importance will be discussed later. The S-wave couwponents are
clearly spin doublet, since the trinucleons have spin %; they are iso-
doublets if we ignore the Coulomb force in 3He. There are also three
independent spin-quartet D-wave components, analogous to the deuteron
case. Unlike the deuteron case, it is possible to construct a positive
parity vector (% X §), and this leads to three quartet and one doublet
P-state components, which are v..y small. Adding everything together,
there are 10 8-, P-, and D-state components, specified by 16 scalar
functions.

The Schrodinger equation for the deuteron involves 2 coupled
equations in one variable (r). The Schrodinger equation for the triton
is a set of 16 coupled partial differential equations in 3 independent
variables. This large number of equations makes the problem roughly
equivalent to » single 4-variable problem, which would require heroic
efforts, even for modern supercomputers. The way to circumvent this
seemingly intractable situation is to use our kaowledge of the physics
of the problem: the angular momentum barrier suppresses many of the
problem's complexities.

Figure 2 shows two of the energy scaler of the triton. The upper
graph illustrates the spin- and iscspin-independent MT-V nucleon-nucleon
potential model(s), plotted versus nucleon-nucleon separ-tion, x, and
for comparison, the centrifugal nart of the kinetic energy (for 2=2):
K22(2+1)/Mx2. We see that the latter dwarfs the potential energy.
Clearly, for higher values of £ this mismatch is even greater. The
implications for the binding of the tritop are immediate: potential



energy contributions for the higher nucleon-nucleon partial waves
rapidly decrease as £ increases. ¥ can easily see this by assuming a
spin- and isospin-independent potential st(x) between nucleons 2 and 3
and expanding this in a partial-wave series in both X and ¥:

Vyg(x) = E oV, (x)<a] (3)

where

lo> = [V, (B, (4)

and the "channel'~label o is simply £ in thie case. This series is
much simpler than the general case, because we have assumed the same
potential in every partial wave. Taking the expectation value of the
potential between all three pairs of nucleons gives

(- ]
V> = 3V, (x)> = 3;; _(I)'dx x2C, (0)V, 4 (x) LA, (5)

where the partial-wave projected correlation function is
- 2 2
Co(x) = fl<al¥>[“y“dy . (6)

Only the completely space-symmetric S-state occurs in the wave function
for this problem, and only even values of £ are nonvanishing because of
this. The lower plot in fig. 2 shows the first four Cl"’ which
rapidly decrease in size with increasing £. The dominant Co(x) is
small at the origin because of the repulsion in V(x), while the
remaining Cz(x)'s behave as xz2 for small x. This means that only
increasingly larger values of x contribute to the integrand in eqn.
(5), which are suppressed by the finite range of the force. The values
of <V£> (for =0, 2, ..., 10) for this simple potential model are
given by [-36.6, -.163, -.019, -.002, -.0004, -.00008] MeV, dramat-
ically illustrating the rapid convergence as £ increases., Clearly it
should be sufficient to restrict £ to 4 or less. We will see later that
this convergence rate also applies to more realistic potential models.
We note that the sum of all the Cz's is the usual two-body correlation
function, C(x).



By expanding the potential in a series and then truncating the
series after a reasonable number of terms, we have in effect reduced
the problem to solving a set of coupled equations (for the partial
waves) in two variables x and y, which makes the problem tractable. A
good estimate of tLe time scale for numerically solving the deuteron
problem, starting from scratch, is one or two months. The scale for
the triton bound state is perhaps two years! The problem is still very
difficult, and requires a substantial commitment of personal and com- -
puter time. For future reference we note that all calculations using
the faddeev approach (to be described next) decompose the nucleon-
nucleon potential into partial waves and solve that (truncated) problem
"exactly".

IV. DBOUNDARY CONDITIONS AND THE FADDEEV-NOYES EQUATION

We wish to solve a partial differential equation, the Schrodinger
equation, for the triton bound state. It is sometimes forgotten by
those who don't perform numerical calculations that such solutions
require the imposition of well-defined boundary conditions. Simple
bound-state problems only require the imposition of finitcness require-
ments for the wave function at the origin and at asymptotically large
distances, where the wave function vanishes exponentially.

The scattering problem is more complex, and finiteness alone is
not enough. Years ago, Foldy and Tobocman(G) showed that the three-
body Lippmann-Schwinger (LS) equation (the Schrodinger equution
rewritten as an integral equation) for scattering has no unique solu-
tions, even when outgoing scattered waves are specified in the usual
way. Even the two-body Lippmann-Schwinger equation has no unique
solution, without further subsidiary conditions, if the the problem is
posed in a particular way! The problem we pose is: what is the out-
going-wave solution for two nucleons with a total emergy of 20 MeV?
This is a "trick" question, because we have deliberately not specified
the center-of-mass (Ct{) motion of the two nucleons. As stated, an
arbitrary linear combination of wave functions for a deuteron with 22.2
MeV CM energy, two nucleons in a 180 threshold state with 20 MeV CM
energy, and two nucleons with an internnl energy of 10 MeV and 10 MeV
CM energy solves the problem. Trivially, we can avoid the problem by



working in the CM frame, which fixes the relative two-nucleon energy.
Unfortunately, even in the CM frame of the three-nucleon system this
does not suffice, since the recoil of a third nucleon can compensate
for the CM motion of the remaining pair in any state of internal motion
commensurate with conservation of energy. Because of this, complicated
phenomena are possible, which makes the ad hoc imposition of boundary
conditions a dubious exercise. An incoming plane wave for a proton-
deuteron system (pd) can scatter directly to a pd final state, or break
up into a ppn final state, or the initial protoc can pick up the
neutron in the deuteron and that deuteron can escape. These many
physical channels are not orthogonal and specifying outgoing waves is
not enough. In the jargon of few-body physics, there are "disconnected
diagrams", "dangerous 6-functions'", "noncompact kernels", end
"nonunique solutions". All these diseases are merely symptoms of the
original problem.

Of particular importance is rearrangement, such as the neutron
picﬁup example described above. We write the Schrodinger equation in
the form

[E-(T+V12+V13+V23)]W =0 , . (7)

1]
where T, E, and Vij are the kinetic energy, total energy, and potential
energy for the pair (ij), respectively. If both V23 and V13 can
support a deuteron bound state, an initial plane-wave state of nucleon
1 and bound nurleons 2 and 3 [denoted (1;23)] can asymptotically become
nucleon 2 plus a bound (13) pair [(2;13)]; the converse is also true
and both wave functions contain both physical processes. The difficulty
is that while the LS equation specifies that the (1;23) configuration
has an incoming plane wave and outgoing spherical wave, it does not
rule out incoming plane waves for (2;13). In order to achieve a unique
solution the LS equation must be supplemented by additional homogeneous

(7,8)

equations » which rule out unwanted incoming plane waves.

Faddeev provided the means to circumvent this dilemma(g).
Although Faddeev's procedurc was developed in momentum space, Noyes(lo)
later cast that work into a physically equivalent configuration space

form. We arbitrarily write



YT = WL, TIME,LT,) = dty (8)

where the variables (;1,;1) are the Jacobi coordinates defined earlier,
and the function y in eqn. (8) is the same for all three terms. The

original Schrodinger equation becomes three separate equations

Clearly, eqns. (10) and (11) are simply permutations of (9), and we
need solve only (9). Since that equation involves only V23( and not
V13) the problem of the rearrangement reacticu has disappeared for ¢].
It is contained in ¥,. By this clever mechanism, Faddeev showed that
we only nead to speczfy explicitly the much simpler boundary conditions
for ¢1, rather than for ¥. Note that the sum of eqns. (9), (10), and
(11) reproduces eqn. (7).

This is seen most cleariy in fig. 3, where the regions of interest
for the variables x and y are illustrated. The configuration (1;23)
corresponds to an asymptotic state with y+=,  and x<xd, the physical
extent of the bound pair (23), and is denoted the "deuteron strip".
Rearrangement corresponds to small X, = I;l-;al (i.e., a bound state in
(13)) and this occurs when 6 = 0, and y = x/2 or 6" = 30° in terms of
the polar coordinates

X = pcosd” ' (12a)

y= lgpainﬂ' . (12b)

In complete analogy with the two-body problem, we can impose boundary
condirvions most easily for the reduced wavefunction
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by enforcing ¢1=0 along x=0 and y=0, and outgoing wave boundary

11
(11) along p=pmax'
These rphysical considerations can be seen graphically in fig. 4

conditions

and fig. 5 for =0, which depict wave functions for the scattering of
zero energy neutrons and deuterons in the quartet spin state. The
smooth function wl in fig. 4 has structure only along the deuteron
strip, while fig. 5 depicts Vq, 8 component of the total wave

function ¥, which bhas structure along the deuteron strip and a ridge
with "wings" along 6 “=30°, which is the outgoing wave in the rearrange-
ment channel. It is clearly a simpler procedure to solve for ¢1 than
Vas which has much more structure.

(3)

The bound-state problem has much simpler boundary

conditions: we need only make the wave function vanish for some large
P=Ppax
problem work equally well for the bound state, and we anticipate that

Nevertheless, the Faddeev motivations for the scattering

the Faddeev wavefunction ¢1 will be smoother and easier to model
numerically than V¥.

Having made the decision to partial-wave project the nucleon-
nucleon force, it is necessary to determine the consequence of this for
the Faddeev-Noyes equation, For simplicity we assume a force which is
independent of spin and isospin and acts only in the s-wave. In terms
of our previous discussion, such a force looks like |0>V(x)<0|, where
the projector |0> refers to s-waves. This produces, with E=h2K2/M,

3° 39 2 - 1,, Xy
+ Z— - U(x) + X° o(x,y) = U(x)[,du ¢(x,,y,),
ax>  4dy? f X¥2 227 (14

where U(x) = MV(x)/K2, p=cos®, and ¢(x,y) = %I%dp¢1(x,y,p). Note that
% does not depend on H; it is completely independent of 6. Moreover,
for the s-wave force chosen, all higher partial waves of ¢1 must
vanish, because V vanishes for those waves, and therefore ¥(x,y,u) =
o(x,y) + ¢(x2,y2) + ¢(x3,y3). This is an extremely important result,
since all of the angular (u) dependence in ¥ comes from the permuted
terms, ¢(x2,y2) and ¢(x3,y3), and the computaticn of & 3-variable
function has been reduced to one of only two variables. When many
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partial waves are computed, one has coupled equations in the two
variables x and y. Nevertheless, the angulsr momentum bar:ier makes
the required number tractable, and the calculation possible.

V. NUMERICAL MODELLII'G

We still must make a choice of numerical methods in order to solve
the equations. A techanique which has proven exceptionally powerful in
modern engineering applications is the finite element method, and its
variant, the method of aplinel(lz). Figure 6 depicts at the top a
function which we wish tc approximate for computationsl purposes,
between the points x4 and X, and for demonstration purposes we chuose
to do so by dividing the distance into 4 equally spaced regions or
intervals. The finite element method consists of approximating the
function in each interval by a (different) polynomial of order N and
forcing the function end its first m derivatives to be continuous at
the "breakpoints" betw2en intervals. For definiteness we will choose
cubic splines (N=3) involving 4 parameters, and force the function and
its first derivative to be continuous. There are a total of 16
par.aeters, and 2 imposed conditions at each of 3 breakpoints, leaving
10 free parameters. The function is chosen to vanish at the end
points, leaving 8 parameters which are chosen so that at two
"collocation" points (indicated by x's) in each of tke 4 intervals the
function agrees exactly with the function we are modelling. If we are
solving an equation for this function, we force the equation to be
exactly satisfied at those points.

An alternative scheme is to use splines, which eliminates much of
the labor. The finite elements in s given interval are grouped with
those in a neighboring interval, which are then .overlapped as shown in
the middle of the figure. That is, at uny point, x, the function is
approximated as the sum of two overiapping functions, each defined in a
double interval. These spline functions and their first m derivatives
are required to vanish at the right and left ends of the double inter-
val and to be continuous at the middle boundary. For our case (N=3 and
m=1) the 8 finite element parameters for any double interval are
reduced to two by these six conditions. We have graphed these
(Hermite) splines as even and odd functions in the double interval, and



the remaining two parameters are simply the overall strengths of each
of these functions. The beauty of this scheme is that the use of over-
lapping splines now guarantees that the function and its first
derivative are everywhere continuous without ~ny extra work! The
boundary conditions are trivialiy satisfied by making the even function
in the end intervalc vanish, and the remaining 8 parameters in the 5
overlapping tpline functions are determined at the colloucation points,
as before. The strength of this rethod is that the overall number of
unknowns has been reduced to the minimum before we even set up matrix
equations.

The orthogonal collocation method allowe one to choose the col-
location points so that the power of Gauss quadratures and splines can
be conbined(la). If we were to perform an integral over the function in
the figure, a natural way to do this would be to integrate between
breakpoints and nge a Gauss quadrature formula in each interval.

Using those quadrature points as collocation points constitutes the
method of orthogonal collocation, which substantially improves rates of
convergence when solving equations using splines.

Because splines are local functions, separately defined in each
double interval, the collocation conditions couple splines from
neighboring intervals only. The cumplete set of such conditions for all
parameters (8 in our example) constitutes a matrix equation, and this
matrix has a very special form because of the locality; it is a 'band"
matiix, with most of the elements zero, as shown at the bottom of fig.
6. BSuch matrices are muzh easier to invert than dense matrices, and
should be preserved, if possible. In order to deal with the angular
integral in eqn. 14, we transform from (x,y) coordinates to the polar
coordinates (p,0°). The integral destroys the double band structure in
x and y; polar coordinates preserve this structure irp the variable p.

There are a number of important advantages which accrue from using
splines to model a function: (1) The spline approximent and a
specified number of derivatives are automatically continuous; (2) The
splines automatically provide an interpolating functiou at any point;
(3) They 'ead to a band matrix; (4) They are "optimally" smooth; (5) It
is easy to change from the equally spaced intervals of our example to



lny desired distribution; (6) The splines are easy to program on a
computer; (7) Boundary conditions are easy to impose; (8) The approxi-
mants exactly satisfy the constraint equations at the collocation
points; (9) Piecewise local functions such as splines do not propagate
approximation errors, as global functions do; (10) The relative
accuracy of the wave function and eigenvalue should be comparable. We
also note that the use of overlapping double intervals corresponds
closely to one derivation of the powerful Gregory's integration rule
from Simpson's integration rule.

There is little difference in principle between solving eqn. (14)
for s single nucleon-nucleon (NN) partisl wave and using many partial
wvaves. The size of the watrices becomes much larger, and the matrix
bookkeeping tecomes very tedious and intricate. In general for each
nucleon-nucleon partial wave, there are two spectator partial waves
associated with the two spin states of the latter, except for total
angular momentum, J, equal to zero, which generates only one. The four
NN partial waves (SLJ) for each J (IJJ,SJJ,sJ-lJ,3J+lJ) thus generate 8
trinucleon channels, except for J=0, which has only two, associated
with 180 and 3Po. As we indicated earlier, the 180 and 331 waves
should be dominant, and we must also include the aD1 wave, which is
strongly coupled by the tenscr force to the 381 wave. This combination
is the standard 5-channel calculation (all positive-parity NN waves
with J<1). The 9, 18, 26, and 34 channel cases correspond to positive
parity waves with JS2, all waves with JS$2, positive parity waves with
38334 waves, and all waves with JS4, respectively.

VI. RESULTS FOR TRINUCLEON BOUND STATES

A brief summary of telultl(la) for the Reid Soft Core(ls) (RSC),
Argonnc(ls) V14 (AV14), Super-Soft-Core(C)(17) [8SC(C)]), and Paris(ls)
potential models is given ip Table 1 as a function of channel number.
3everal conclusions are obvious: (1) The 5-channel approximation gives
most of the binding (within .2-.3 MeV); (2) The negative-parity NN
waves don't have a large effect; (3) The binding is roughly 1 MeV below
experiment; (4) The point-nucleon rms charge radii (i.e., the proton
radii) for 3He and 2H are larger than experiment. Because the
positive-parity waves dominate, this table doesn't demonstrate the rate



of convergence of the partial-wave series. This is shown in Table 2
for the RSC 34-chaunel case, where <V> is broken down into contri-
.butions for fixed J and fixed parity. All but 1% of the total poten-
tial energy (indicatéd by I in the last column) is generated by the
first 5 channels, and most of the rest from the remaining positive-
parity waves. The small negative-parity NN forces give 200 keV more
binding, which is‘not obviously reflected in Table 1 (compare 18
channels to 9 channels). The reason is that the negative-parity forces
couple directly to the small components of the wave function and this
leads to nearly cancelling contributions from first- snd second-order
perturbation theory. First-order perturbation theory works well for
cll the other small force components.

The rrobabilities of the important §°- and D-state wave function
components are small. The D-gtate probabilities for the triton are
very nearly 3/2 times the correiponding D-state probabilities of the
deuteron for each pétential model.

Table 1. Binding energies, point charge rms radii in' fm, and pe--
centages of wty,)function components for various two-body
force models.

-E (MeV) <r2>¥ <r2>* P

He i PFs: Bp
Mdel 5 9 18 26 3 3 3% M
RSC 7.02 7.21 7.23 7.3 7.35 1.85 1.67 1.40 9.50
AV14 7.46 7.5, 7.7 7.67 7.67 1.83 1.67 1.12 8.96
B8C(C),gy7-46 7.52 7.9 7.54 7.53 1.85 1.68 1.24 7.08
Paris 7.30 7.38
Expt . 8.48 1.69(3) 1.54(4) == ==

Table 2. Potential energies (in MeV) for the RSC 34-channel case
broken down according to J (total nucleon=-nucleon angular
momentum) and parity, and the kinetic energy for comparison.

J 0 1 2 3 4 I

<vV.,> =13.729 =43.647 =0.435 =0.115 =0.020 =57.946

[ &3

<v}> -13.553  =43.874  -0.188  =0.117  =0.014  =57.746
<v3> -0.176 0.227 -0.247 0.002 -0.006 =0.200
<T> 50.600

<> =7.348



Clearly there is underbinding, and the radii aren't correct either.

7he latter and other important observables depend on the binding
energy, and since that is wrong the observables can't be correct. In
order to investigate this problem which has plagued us for i decade, we
anticipste some of the results of the next section, and introduce a
three-body furce to increase binding. We don't need to know what it is
at this stage. Our study of these observables will allow us to gain a
qualitative understanding of them at tiie same time.

Although a wide variety of bound-state calculations have been
performed during the previous two decades for a variety of potential
models, many produced only binding energies and no wave functions, and
others required approximastions whose relisbility was difficult to

assess. The recent lt“diel(zo)

of the Los Alamos-Iowa group have
produced a large number of numerica.i.y accurate triton wavefunctions
for four different two-body potential models in corbination with
several different three-body force models, each calculated for various
numbers of channelse. Although there is no guarantee that these model
combinations accurately describe nature, the solutions at least
incorporate the correct qunacum mechanical constraints. Moreover, the
binding energies for the set of models extend from below to above the
physical binding energy of the triton. This provides us for the first
time with the opportunity to investigate how a variety of important
ground-state observables depend on the binding energy, and whether
there is any "true'" model dependence as well.

What are the important ground-state properties, besides the
binding energy? A list of the most commonly calculated ones would
include the (point) charge radii, <r'>:. and <r‘>:, the probabilities
of the various wave function components (which are not meulurubla(zl)).
the Coulomb energy of 3He, E., the magnetic momenta of 3He and 3,
their asymptotic norms (sizes of asymptotic wave function compouents),
and the p-decay matrix element of *H. The magnetic moments depend on
meson-exchange currents and on the 8'- and D-state probabilities, PB'
and PD' as does the pP-decay matrix element; we will discuss them later.
The asymptotic norms depend on binding, but this has not been assessed

in detail yet. The redii and Coulomb energy depend sensitively on the



binding energy, and calculations of these observables which use models
that underbind will produce inadequate predictions. We assess the
status of these important physical quantities be'ow, together with
simple qualitative arguments that account for our conclusions.

For padagogical purposes, the difference of the 3He and *H charge
radili can be understood in terms of the oversimplified pictures in fig.
7. The sketch at the top depicts a schematic ’He vhen the nucleon-
nucleon forces between all pairs are identical. This is represented by
an equilateral triangle configuration, with shading depicting the
protons. The charge or proton radius, RP’ measures the integrated
probability of finding a proton at a distance r from the center-of-
mass. In this simple example, the proton, neutron, and mass radii are
all the same. When the forces between pairs are different, the appro=-
priate pictures for 3He and %H axe those of fig. (7b) and fig. (7¢).
The np torces are stronger than che nn or pp ones (only the np system
has a two-body bound state) and this allows the prctons in 3He and the
neutrons in 3H to lie further froa the the center-of-mass than their
counterparts (6>60°). The resulting isosceles configuration is
veflected in the appearance of an 8'-state, which directly measures the
isosceles-equilateral difference, and in the fact that RP for 3He
increases, while that of *H decreases, and hence <r’>:e > <r’>~,
irrespective of any pp Coulomb force in ¥He.

These arguments can be made quantitative hy decomposing the mean-
square-radius in impulse approximation into isospin componentl(zz):
the isoscalar part <r‘>' mirrors fig. (7a) and is determined by sums of
squares of wave function components. The isovector component contains
one part proportional to the isoscalar component and another part
largely determined by the overlap of the S- and S'-states, which we
denote <r'>v (v does not mean isovector), and determines the difference
between 3He and H. One finds for 3He (Z=2) and 3H(2=1), with upper and
lc'ex signs, respectively,

Z<rl> = z<:'>. + <z-'>v . (15)

These quantities have very different behaviors. Radii in general are
sensitive to the asymptotic parts of the wavefunction. If one assumes



that the entire wavefunction !s represented by the ssymptotic form(a)

N exp(-xp)/pslz, one finds that
s o1 gh
<r e = 3 EB . (16)
Figure 8 shows the results of calculating <r3>r, and <r3>3, together
with the experimental data corrected for the nucleons' finite nize(z).

-.5

B 4
indicating thet our simple argument was essentially correct. The
difference radius is fit by .IAE;'g, and this different behavior
reflects different physics. Clearly , the amount of S'-state plays a
significant role. The percentage of S'-state is plotted versus binding
energy in fig. 9, and the fit varies as E;Z'l This decrease is
expected, because as binding increases only the average force is
important, and the np-nn difference is less important. In a simple

harmonic oscillator description, the S'~state is given in terms of

The fit to the isoscalar points 1s accurately represented by .8E

excited state configuratious, which decrease ~EB a8 the oscillator
spacing increasssr with bLinding. Finaliy, the 3He and 3H recults are
shown in fig., 10. If the small discrepancies between theory and
experiment are real, they probably reflect a small breakdown of the
impulse approximation.

The Coulomb force Vc\x) between protons in *He is quite weak and
can be accurately treated in perturbation theory. The second-order
Coulomb effect(zs) is estimated to be ~=4 keV, compared to a 3He-*H
binding energy difference of 764 keV. Since Vc ~ 1/R, schematically,
and since R ~ E;h. wve expect Ec to scale roughly as Eg. A better
description is available, however, if we utilize fig. (7a). In this
schematic 3He the distance x between protons is given by J5r, and thus
Ec = <Vc(x)> = g<1/r>/J3, vhere o is the fine structure constant.
Consequently 2 ,

3
B, ¥ T, (1) + o (D)a(e) W EY (17)
vwhere we have added the effect of nucleon finite lize(zz). g(r), and

written the matrix element in terms of the scalar and difference



charge densities. The accuracy of this hyperspherical approximation ls
demonstrated in fig. 11. Although a priori a very implausible
approximation, EE overestimates Ec by only 1 percent. This is an
important result, because the charge densities are experimentally
(22) one finds E_ = 638 £ 0 keV. This is
significantly less than the binding energy difference and reflects the
existence of nonnegligible charge-symmetry-breaking forces other than
the Coulomb interaction.
VII. CONCLUSIONS

Rapid and significant advances have been made in the few-nucleon
problem recently. Many aspects of the “ound states, including the

measurable. Using these data

Coulomb energy and charge radii, are now fairly well understood.
Although we have concentrated on the trinucleon bound states, the
continuum is also important. Photonuclear reactions necessarily break
up the triton and 3He, and this is an important area of study. The
continuum problem above breakup threshold is much more complicated than
the bound-state problem, because the boundary conditions are difficult
to implement in a tractable way. Nevertheless, the future of three-
body physics lies in this regime.
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LECTURE 2. TRINUCLEON INTERACTIONS

I. NONTRADITIONAL NUCLEAR PHYSICS

For much of its 50 year existence nuclear physics has made tacit
assunmptions in its approach to problem solving. These assumptions,
vhich comprise what I call traditional nuclear physics, are:
1) Nuclei are basically nonrelativistic and weakly bound, with

average momenta Leir  typically 100-200 MeV/c;
2) The binding of nuclei is produced primarily by two-body forces,

which act only between pairs of nucleons at a time;
3) Only nucleon degrees of freedom are important, and nucleon sub-

structure and meson or quark degrees of freedom can be ignored.
Although there were some early challenges to this approach to our
field, it was only in the late 1960's that a serious, concerted effort
was made to find exceptions to these '"rules". The problem was that
traditional nuclear physics was reasonably successful. Moreover, the
curse of nuclear physics asnd related fields is our inability to
accurately solve the many-body problem beyond the mean-field approxi-
mation, which meant that disagreements between theory and experiment
were difficult to interpret. Were they due to poor wavefunctions, or
to a poorly understood reaction mechanism?

The importance of the few-nucleon problem can be understood in’
this context. At the same time that modern intermediate energy (i.e.,
oontraditional) nuclear physics was being developed, great strides were
being made in the few-nucleon problem. The early calculations by Tjon
(5) (25)
to solve for binding energies and wave functions; the latter were then
available for computing electromagnetic matrix elements. This is still
the strength of the field. We can solve the Schrudinger equation

and collaborastors and by Kalos used modern computational methods

"exactly" for wave functions, and use the wave functions in calcula-
tions of electromagnetic processes, which are the most "interpretable"
of all the types of reactions available to nuclgnr physicists. This
is also our challenge for the next decade.

We have already estimated the size of relativistic corrections to
be on the order of one to s few percent. The best evidence fo:
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relativistic corrections in low-energy nuclear reactions occurs for

(26)

at 0°. This configuration greatly suppresses the dominant non-

deuteron forward photodisintegration » Where the proton is detected
relativistic electric dipole (E1) reaction, so that a nominally one
percent relativistic correction becomes a 20 percent effect! This
points out one of the difficulties in challenging traditional nucleer
physics: novel reactions or special regimes of known reactions must be
sought in order to suppress the "ordinary" physics. The importance of
relativistic effects will arise again in the context of turee-nucleon
forces.

One of the biggest success stories in all of nuclear physics
during the decade of the 1970's was the convincing demonstration of
meson degrees of freedom in electromagnetic reactions, and in
particular, of the importance of the pion in exchange currents. Much
of that atory revolved around the threshold deuteron photo- and
electro-disintegration and np radiative capture, all of which are
(27) calculated the
dominant pion-exchange processes and showed that the long-standing 10

magnetic dipole (M1) processes. Riska and Brown

percent discrepancy in np radiative capture could be largely understood
from those processes alone. Moreover, many of the uncertainties in the
pion's strong interaction had been eliminated as the consequences of

chiral symmetry(zs)
had unfolded during the decade of the 1960's. The possible importance

of such meson-exchange currents had been known since the 1930's, when

y which singles out the pion as a special particle,

Siegert(zg) demonstrated that the long-wavelength E1 current operator
could be written in a form involving only the electric dipole operator
(calculated from the charge density), which was shown to be accurately
known in the nonrelativistic approximation. T ', combination is known
a8 Siegert's theorem and is the backbone of photonuclear physics,
because it allows a rimple interpretation of reactions. Magnetic
processes are very model dependent and sensitive to details of the
current, while Siegert's current is not.

In what follows we will investigate in some detail in the context
of the three-nucleon problem two of the nontraditional elementa we
listed earlier: three-nucleon forces and meson-exchange currents. We
will see that both are linked to relativistic corrections and to each



other. Regrettsbly, we must leave the interesting two-body problem to
others.

II. THREE-BODY FORCES

A. Introduction

Before considering the evidence for three-body forces in nuclei,
we first discuss whether such forces exist in other systems, and hov
they are defined. Most of the weaker fundamental forces, gravitational
and electromagnetic, are basically two-body in nature. The considera-
tions of Newton and Coulomb were based on that assumption. Is this
asgsumption valid? We give two answers, which we will discuss in
detail: (1) It is an excellent approximation; (2) It depends on your
point of wiew,

We begin with a classical example, the earth-moon system with a
small satellite orbiting the earth. We also assume, as Newton did,
that each tiny particle of mass (aton) interacts with every other by
two-body forces; that is, the interaction between two such particles is
not affected by the presence of a third. This by itself is not enough
to be able to solve for the coupled motion of our classical system,
since there are enormous numbers of atoms in the problem we posed. It
was Newton's genius that allowed him to see that the int»raction of
large bodies could be constructed from that of the individual tiny
pleces, after he invented the necessary mathematics! We therefore
reduce the problem to one of three macroscopic bodies interacting with
each other. Does the position of the moon affect the force between the
satellite and the earth? If on. neglects the tides, the answer is no,
aud the problem is simply one of 3 separate two-body forces between
composite objects. However, the tides caused by the moon affect the

satellite motion in an observable wny(ao)

y and the position of the moon
is clearly relevant, which means that the earth-moon satellite system
exhibits a three-body force mediated by a deformation of the earth,
namely the tides. The effect is very small, however.

A second example of three-body forces is the atomic Axilrod-Teller
force(al). Many-body calculations with groups of atoms are tradition-
ally performed by assuming an effective interaction between atoms,

rather than breaking the problem down into purely Coulombic two-body
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interactions between all the nuclei and electrons in all the atoms,
which is much too complicated. Typical of two-body atom-atom inter-
actions are the long-range van der Waals force, and the Lennard-Jones
force. Having arranged the problem in this way, there will be forces
between three atoms, between four atoms, ... , which arise from mutual
distortion.(32) The long-range three-atom force is the Axilrod-Teller
force, whose most salient feature is the strong Jdependence that it has
on the relative angular orientation of the atoms. This is very typical
of three-body forces, whatever tneir origin, and was a feature of our
classical example. This property will be important to us later.

We see that many three-body forces are largely a matter of
definition, rather than fundamental. In order to make calculations
tractable, we deasl with the interactions of composite systems, rather
than their constituents. Although the constituents may interact via

two-body forces, the composite objects can interact via effective
many-body forces. For our purposes we define three-nucleon forces as
those forces which depend in an irreducible way on the simultaneous
coordinates of three pucleons, when only nucleon degrees of freedom are
taken into account. One new element appears in our definition, the
word "irreducible". In our classical example we separated the total
force into two-body forces between pairs of objects (e.g., satellite-
earth) and whatever was left over. It is important not tc confuse the
sequential interactions of two-body forces as a three-body force; that
is the meaning of "irreducible". It is a simple concept but a com-
plicated technical matter to put it into practice(aa), and the latter
requires much more time than we have here.

This brief introduction to a fascinating subject brings us to the
topic of interest: three-nucleon forces. The types of processes which
can contribute are illustrated in fig. 12. We are primarily interested
in pion-range forces, since the pion has the longest range (~M/jc,
where y is the pion mass). We hope, on the basis of arguments to be
presented later in connection with exchange currents, that the longest-
range forces will dominate. Figure (12a) shows the generic two-pion-
exchange three-nucleon (2n-3N) force. A n' is emitted by the proton on
the left, propagates and scatters from the middle nucleon (the "blob"



represents the scattering mechanism), then turns into a n°® which is
absorbed by the rightmost proton. The many possible combinations of
pion charges means that this force has a complex isospin structure.
Because we are dealing with pions, it also has a complicated spin
structure. Moreover, the pion is not real, but virtual or "off-shell".
Figures 12b-f are possible components of fig. 12a. The second process
is "reducible"; that is, it looks like two sequential exchanges of a
pion, and hence is not fundamental. It must be discarded. Note that
this reducible graph can be cut in two without breaking anything but
nucleon lines. The next process is similar to the classical example;
the second nucleon is "deformed" into an isobar by the pion exchange
and leads to the conceptually important isobar-meditated three-body
force. Figure 12d has an intermediate nucleon-antinucleon pair, and
leads to a force which is conceptually the same (but not structurally)
G4 In figs.
12e and 12f the pion scatters from virtual mecons. The three-isobar

as the atomic Primakoff-Holstein three-electron force

force shown next is a 3m-3N force, which is conceptually similar to the
Axilrod-Teller atomic force, because it is produced by the mutual
distortion of three nucleons. The remaining processes can also con-
tribute to 2n-3N and 3n-3N forceu.(z)
B. Evidence

The results presented earlier strongly indicate that there is a
defect in binding from conventionsl two-body forces. Moreover, the too
large (calculated) radii are likely a symptom of this same problem, as
we saw. There are several plausible explanations: (1) Relativistic
corrections have not been calculated; (2) Three-body forces, which
depend on the simultsneous coordinates of all 3 nucleons in the triton,
have not been included; (3) Our model Hamiltonians are simply
inadequate, and the effects of nucleon structure or meson degrees of
freedom should be taken into account. In tact, these catugories are
not distinct. Relativistic corrections can be broken down into one-
body (kinetic-energy) terms, two-body (potential-energy) terms, and
three-body (and higher) potential-energy terms. The size estimate we
previously made of relativistic corrections (1-few percent), taken for
the kinetic or potential energies (150 MeV), predicts a scale of 0.5-1
MeV. Those calcularions that have been performed on the one- and



-25-

two-body parts are consistent with this estimate, but find a tendency
for cancellation between the attractive kinetic-energy correction snd a
repulsive potential-energy correction, leaving & small residue. It is
also known that a substantial part of the two-pion-exchange three-body
force is a relativistic correction(as) of order V;/Mcz, vhere Vn is the
usual one-pion-exchange potential (OPEP). Moreover, the isobar par% of
the former force shown in fig. 12c is due to nucleon substructure: a
pion emitted by nucleon 1 (virtually) polarizes nucleon 2 into an
isobar, which decays back to a nucleon plus a pion, which is absorbed
by nucleon 3. Most of the currently popular three-nucleon
forces(35-39) have been derived by considering meson degrees of
freedom. These forces clearly exist in nature, but are they large
enougii to solve our binding problem?

Another long-standing problem has been a good theoretical under-
standing of the 3He charge form factor, or tie Fourier transform of the
charge density. The form factor, (fig. 22, to be shown later), has a
typical diffraction shape, as a function of q, the momentum transfer,
falling rapidly through zero, becoming negative in the secondary
maximum, and then positive again. The Jifficulty has been that
theoretical calcnlations have pradicted too small a (negative) strength
in the secondary maximum. The point-nucleon charge density pch(r)
construct:..d from the experimental form factor Fch(qz) is zgnsequently
much lower than theoretical calculations near the origin , as shown
in fig. 13. This follows from the Fourier transform relationship

| 2, 2
Pen(®) = = Jo Fepa)a%dq . (18)

Clearly a large negative comtribution to Fch lowers pch(O). The
argument that we have presented is somewhat controversial(z), because
values of Fch for very large q are needed in order to make the integral
converge, and this requires considerable theoretical assumptions and
extrapolation, some of which may be dubious. Nevertheless, there is a
problem with the form factor, as we will see later.

In impulse approximation the charge density measures the
probability of finding a proton at a distance r from the trinucleon



centér-of-mass, indicated by the x in fig. 1. Taking nucleon 1 to be
that proton, we have r = %y, and forcing r to zero makes y zero. This
is the condition for all three nucleons existing in a collinear con-
figuration. Binding, on the other hand, prefers equilateral or isos-
celes configurations, so that each nucleon can be attracted by the
short-range force of each of the other nucleons. Both of our problems
with experiment could be solved if the three-nucleon force were
attractive for equilateral configurations and repulsive for collinear
ones. Schematic models of the force have this structure, and produce
both effects, although other models may not. We note that r=0, or y=0,
does not correspond to the "hole" in the wavefunction produced by the
ttrong short-range repulsion. The S-state component of the wave-
function for 0m0°, corresponding to a 5-cnannel RSC potential
calculation, is shown in fig. 14. The deep valley at 0 °=30° reflects
that repulsion, while pch(O) is given by an integral over x, along y=0.
This Schrédinger wavefunction is generated by the much smoother Faddeev
wvave function component ¢§ shown in fig. 15.

In addition tec bound states, the trinucleons have a rich continuum
structure. At very low (essentially zero) energy the scattering of a
nucleon from the deuteron can be characterized by a single observable,
the scattering length, a, which can be decomposed into spin-doublet
(lz) and spin-quartet (a ° components. The latter is quite unin-
teresting, because it seems to depend only on the deuteron's binding
energy due to the effect of the Pasuli principle in the quartet state;
consequently, all "realistic" force models produce nearly the same
result. Calculated doublet scatturing lengths, on the other hand, have
been too large. Typical values are shown in fig. 16, vwhere . has been
cnlculutcd(AI) for a variety of realistic and unrealistic two- and
three-body force models. These results for pd and nd scattering
separately fall on "Phillips lineu"(az) when plotted versus the
corresponding triton or 3He binding energy. The fit to the nd results
passes through the experimental datum; the pd result does not, which is
a myatery at this time. The fact that all of the nd doublet results
track the same Phillips line indicates that whatever physical mechanism
corrects the binding defect will also produce a correct value for 0y,
at least for the nd case.



Finally, analyses of the nn-scattering length, a0 from two
separate experiments, n+d+(n+n)+p and N +d>(n+n)+y, have produced three
different values of LI It has been argued 43) that three-nucleon
forces, conspicuously missing in the latter reaction and not included
in the analyses of the former reaction, might produce agreement among
the values of LI from the different reactions. Only schematic
calculations have been performed to dlte(aa).

The evidence we have presented is tantalizing, but it is at best
circumstantial. At preaent the best evidence e-ists in the properties
df the bound state. Can current models of the three-nucleon force
produce a substantial increase in binding? At least four such models
have been used recently: (1) the Tucson-Melbourne (TM) two-pion-
exchange force(as); (2) the Brazilian (BR) two-pion-exchange forcecas);
(3) the Urbana-Argonne (UA) schematic force(37); (4) the Hajduk=-Sauer
isobar lodel(as). Hajduk and Sauer do not explicitly include a
separate three-body force in their model, but rather include isobar
components in their wavefunctions. Three-body-force contributions,
implicitly included in their model, must be deduced later. The TH and
BR models incorporate figs. 12c-12f into their forces.

C. Calculations

The early calculations used different force models and various
spproximations, which resulted in a chaotic situation, some calculations
finding negligible additional binding and others finding more than one
MeV. The cituation has recently been clarified in part 45). Most
calculations had resorted to perturbation theory using 5-channel wave
(46)' which fails badly. Perturbation theory is inadequate
for the TM model, giving results wvhich are much too small. The
S5=channel wave function approximation is also inadequate in general, as
noted by Hajduk and Baucr(ag). because the pion-exchange potentials
tend to couple to small wave function components not adequately
represented in the 5-channel approximation; 34 channels are required
for complete convcr;ence(as). The latter calculations found approx-
imately 1.5 MeV additional binding from both the TM and BR forces, in
combination with twe different two-body force models. Calculations of

pch(o) are not completed.

functions



Although these results indicate a substantial three-body force
effect, caution is requived. Hajduk and Sauer find a small (-.3 MeV)
three-body force effect. Their approach is very different from the TM
and BR groups, and the physical reasons for the discrepancy are not
known. Moreover, the "long-range" two-pion-exchange force is unfor-
tunately quite sensitive to its short-range behsvior, and it is
possible to substantially lower the binding by making plausible
modifications of this behavior. This field is in its infancy and much
more work needs to be performed.

Finally, fig. 17 shows a possible lcheme(47) for determining the
size of three-body forces by exploiting its angular dependence in the
continuum. The initial pd configuration can be broken up into a p+p+n
final state, which is measured in an equilateral configuration (b) and
in a collinear one (c). This very difficult experiment might shed
light on such forces, by looking for the expected additional attraction
in the former configuration and repulsion in the latter.

III. ELECTRUMAGNETIC INTERACTIONS
A. Relativistic Corrections

If relativistic effects are corrections (rather than dominant), an
expansion of operntorncaa-Ag) in powers of (v/c) could prove useful in
explicating the physics of various processes. The nonrelativistic
charge operator (po) has the form

A
PoCx) = 151°*°3(“*) . (19)

which confines the charge at a point x to those nucleons located at 9
with e, =1 (protons), rather than e, = 0 (neutrons). The classical
current operator has two components,

A = A »
() = Ze (Pi,83(xex)) + ™ 3 WO 830 : 20
0l = Znilgf® Gl » ™R o Oy @0

where 0 Hyo ;1. and 3(1) are the charge, magnetic moment (in nuclear
magnetons), momentum, and (Pauli) spin operators for nucleon i, and M



is the common nucleon mass. The first term is the convection current,
produced vy charges moving with velocity ;/N. The second is the
magnetization current, produced by the elementary "bar magnets'" that
sre the individual nucleons. Note the explicit factor of 1/Mc in each.
The currents are smaller then the charge by factors of 1/c and 1/M, and
M is a large number on the scale of nuclear momenta.

In order to count powers of 1/M as equivalent to powers of 1l/c, we
must use the fact that nuclei are weakly bound, and the potentisl and
kinetic energies (p?/2M) are nearly equal and opposite. Consequently,
we enpect momentum-(kinetic) and potential-dependent operators of the
same order in (1/c) to be comparable. For both these reasons we reckon
potential energy as order (1/M), and thus a series in 1/M is the same
as 8 series in 1/c. These are our "rules of scale".

Corrections to tke charge operator Po (order (llc)o) are of order
1/c2, or 1/M?, as originally argued by Siegert(zg). They include(26)
the spin-orbit interaction charge density, the Darwin-Foldy term, and
various meson-exchange contributions. Tire spin-orbit and Darwin-Foldy
terms play an important role in the charge density differences of

1lotopel(48)

, and the former produces a relativistic correction to the
dipole operater, which is the dominant such correction to deuteron
forward photndisintegration. Corrections to the current operator are
of ord:r 1/c¥ (or 1/M3), und higher. They include meson-exchange
contributions. The scheme we have listed here, with the components of
the charge operator being of order (1/c)°+(1/c)2+ (llc)b+ «e. , a0d the
current being of order (1/c)+(1/c)3+ «+s , is not the only one
possible, in general. The other possibility is for the leading-order
current to be oi order (llc)o end the charge to be of leading order
(1/c). The former type of current, whose archetype is the electro-
magnetic or vector current, ir denoted(ag) class I, while the latter is
termed class II. Does any simple example of the latter class exist?
The ansver is yes and is exemplified by the axial vector curreat, which
is important in P-decay. The Gamow=-Teller f-decay operator is the
axial current, 3A' and is of nonrelativistic order, (llc)o.



B. Current Conservation and Exchange Currents

The nonrelativistic currents we wrote in eqn. (20) are also the
standard currents of atomic physics. They do not depend on the binding
potential. Is the same true for nuclear physics? The answer is no,
and points out an important qualitative difference between nuclear and
stomic physics: binding in atomic physics is accomplished via exchange
of neutral virtual quanta (photoms), while in nuclear physics at least
half of the binding arises from the exchange of charged quanta (e.g.,
mesons). The difference is qualitative, because the motion of any
charged particle generates a current in both classical and quantum
physics. In a weakly bound system of heavy particles, the binding
quants (mesons) move very rapidly compared to the nucleons, and hence
the charge is largely confined to the heavy particles. The charge
operator in eq2. (19) simply reflects this statement. Meson-exchange
corrections to po arise from nucleon recoil and the finite time of
propagation of the mesons between nucleons, and sre at least second
order in 1/c2, On the other hand, the weak binding argument we
produced earlier would indicate that the nonrelativiltic nuclear
current gets large (50% to 100%) contributions from potential-dependent
currents. This estimate turns out to be too high because of an
accident of nature. The big exchange-current effects in the two-body
problem we discussed earlier were found in isospin-changing (isuvector)
magnetic dipnle transitions, and primarily involve the magnetization
current. The isovector part of that current is proportional to the
isovector nucleon magnetic moment, p: = pp-pn 2 4.71 n.m., whose large
size suppresses the fractional exchange-current contribution. Were p:
of "pormal" size like the isoscalar moment, p: = pp tu o= 0.88 n.m. ,
exchange-current effects in nuclei would be typically 50%!

The single most 1mpoitlnt theoretical aspect of electromagnetism
is gauge invariance, which follows from the masslessness of the photon.
It must be possible to make a photon's wave function orthogonal to the
Poynting vector (i.e., transverse) in any frame of reference, because
the photon's helicity is an observable. A Lorentz transformation can
alter the photon's wavefunction, however, and gauge invariance is the
condition which restores transversality. For processes which involve



only a single photon, real or virtual., gauge invariance is exactly
equivalent to conservation of the electromagnetic current, whose
components are p and 3

VI = -tlH,e1 (21)

where H is the strong interaction Hamiltonian.

If we write H = T+V, where T and V are the kinetic and potential
energies, and uere isospin notation for e, = (1+tz(i))/2 in eqn. (19),
we see that thiuse parts of the potential between nucleons i and j which
are isospin dependent [(t(i) t(J))V ] will not commute with p, and
hence there must be exchange or potentinl dependent currents in ¥ to
make current conservation possible. The strong isospin dependence of
the force guarantees large exchange currents, as we previously argued.
We note that the magnetization current is divergenceless (solenoidal),
and the convection current satisfies eqn. (21) in conjunction with the
kinetic energy, T.

The existence of these currents does not mean that we can cal-
culate them. Indeed, we are faced with the same problem that has
confronted nuclear physics from its beginnings: without a tractable
model of the strong interactions, we are able tn calculate only in
perturbation theory, which does not obviously converge. Fortunately,
an accident of nature rescues us from this dilemma. The nucleon-
nucleon interaction is strongly repulsive for small separations, and
this makes the probability of finding nucleons in such configurations
very wilikely. It also means that the matrix elements of any short-
range current operators are greatly suppressed, and the lougest-range
operators should dominate. This is illustrated in fig. 18, which
shows the two-body trinucleon correlation function C(x), formed by
integrating |¥|? over y and &°§. Exchange currents 'vould contribute to
the ground state proportional to IC(x)j(x)x'dx. The maximum value of
C(x) falls between one~- and two-pion-range as indicated by the arrows,
and p-meson range corresponds to a very small value of C(x). The
additional factor of x? in the volume element further accentuates the
long-range operators. We expect on the basis of these arguments that
the longest-range currents, the one-pion-exchange (OPE) currents,
should dominate, and explicit calculations bear this out.
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The pion's mess is much smaller than that of any other meson,
which appeared to be accidental until the discovery of (approximate)
chiral symmetry. Not only does that symmetry account for the small
mass, it places constraints on the pion's interactionl(so) with other
hadrons, which allows many calculations to be performed that would
otherwise be dubious. Because OPE currents play the dominant role in
exchange currents, and because of their past and continuing importance
in our field, we derive them from "first principles" in the following
section.

C. One-Pion-Exchange Currents

Figure 19 shows the four dominant processes involving the exchange
of a single pion. Figure 19a depicts the OPE potential arising from n'
exchauge. In addition there are contributions from n and n® exchange.
In few-nucleon systems the OPE potential is extremely importaut, and
dominates the binding; it is attractive and has a very strong temsor
force. Figures 19b-19d show how a pion influences the electromagnetic
interaction of a nucleus: the cross and wiggly line denote an external
electromagnetic interaction, which produces a pion (photopion
production) on one nucleon that is later absorbed by a second nucleon.
Processes (b), (c), and (d) are the '"seagull", "true-exchange", and
"isobar" portions of the pion-exchange current.

Because of their importance, we will derive the operators corre-
sponding to fig. 19. We are only interested in the nonrelativistic
portions of these processes and consequently work in the static limit
(M+»). The basic building block we need is the pion-nucleon vertex,
j;(g), two of which comprise OPEP. Because the pion has three charge
ctates (n+,n°.n'). the vertex must be an isovector, indicated by the
(isovector) index a. This vertex determines the probability of a
virtual pion, whose wave function is ¢:(g), being emitted from nucleon
1 at the point x:

Mooy ® JURCR) 93000 ¥, () 6300 & (22)



where

e = 23 g ) (23)
The integrated probability of a pion of mass p and charge state a being
emitted by a nucleon which moves from astate i to siate f is given by
the Hamiltonian HnNN’ while the various parts of the vertex operator Jﬁ
have simple physical interpretations. The &8-function reflects a locality
of the interaction; the pion can only be emitted from a nucleon located
at X The pion has spin O and negative parity. Because parity is
conserved in the strong interactions, the vertex must include a compen-
sating negative-parity operator, and only V (the pion's momentum operator)
is available, because we have ruled out the nucleon's momentum (we are
working in the static limit). The vertex must be Hermitian and a scalar
and the only other vector available is 3(1). the nucleon's spin.
Alternatively, eqn. (23) reflects the pion's preferred p-wave interaction
with a aucleon. The nucleon isospin operator ta(l) allows HnNN to be
an isospin scalar of the form ?.$n or ra¢z. The dimensionlesa coupling
constant f (fg 8 f3/4n & 0.079) determines the strength of the interaction
and the (-) sign is conventional. We see that the static jz is uniquely
determined by invariance (spin, parity, isospin) arguments.

The other bit of physics we require is the equation of motion of
the pion field, which alluws us to propagate a pion from one point to
another, or, equivalently, to '"tie together" two vertices. This equation
for the pion field is the usual wave equation for massive particles,
and mirrors the analogous Maxwell equation for the electromagnetic
vector potential:

2
(#-p- ;fi> a0 = 4N, (24)

where we have allowed for finite propagation time of the pion. This
violates our static assumption and we should neglect all time dependence,
resulting in
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@Dl = W, (25)
which can be solved for ¢z(5):

oR(x) = Zain (IxyDINGR) & = 722 ) 3) Vb, (x-x, D, (26)
vhere the static pion propagator is

-uz

b (2) = 55— . (27)

The integrated energy shift due to the exchange of a pion being omitted
by nucleon 1 at ; and absorbed by nucleon 2 at x 1s then simply given
by perturbation theory:

6 = f1%(03 (8% = 2205 1000n (Ux-yDidep axddy . (28)

In this exercise we have ignored the nucleon wave functions (§) in eqn.

(22) because we are constructing an operator in the Hilbert space of

the nucleons. Identifying AE as the OPE potential, Vn(g)
]

we obtain
after performing the integrals,
2
£ + -+ -+ >
Vo (p) = 5 (F(0)-T2) 8(1)-¥ o(z)fyho(r) : (29)
v

where ¢ = ;1-;2. The isospin dependence is explicit and is responsible
for exchange currents, as we indicated earlier. Moreover, the
derivatives lead to the extremely important tensor force.

The model-independent pion electromagnetic interactions are also
easily obtained. Typically, the electromagnetic interaction vertices
can be obtained by means of the "minimal" substitution: all factors of
momentum, ;, in the strong interaction Hamiltonian are replaced by
(5-.K), vwhere X is the electromagnetic vector potential and e is the
fundamental charge. Indeed, this is the origin of the nucleon
convection curreat via the kinetic energy, T. We also note that the
magnetization crrrent is special (it is solenoidsl, or divergenceless),
and does not follow from such arguments. In eqns. (22) and (23) we



regsort to a trick and write
> > > + -+
31$n(51)'t(1) as i[plit(l)'$n(£1)]i replace pl by pl-elxl'

and use the isospin form of e which leads to

B = Sl @3 00u R (30)
where
Jee® = S 3 axEd, (31)

and we have used [tz, ?'$n] = -21(¥X$n)z. The electromagnetic current
operator corresponding to fig. 19b can now be easily calculated in
perturbation theory using eqn. (26):

6k = -efJg ) K (32)
where

2
£ . -
3o ® = = 3(1&%(x-%,)3(2) ¥, b, (x-x,) FANF(2)), + (102) a5

h =

This result is quite obvious, given eqn. (31) and our previous
derivation for OPEP; we simply replaced ¢: in eqn. (31) by thst in eqn.
(26). There are two terms, because the process is not symmetricsl in
nucleons 1 and 2, unlike the OPEP case.

The remaining model-independent process is depicted in fig. (19c¢),
where the fundamental pion electromagnetic vertex is given hy

Hory = STl G001, A & (34)

where fﬁz ] ng-gi. Up to & sign, the form is almost obvious, since
the nucleon convection current is often written in the form:

(¢13¢1 + (;wf)fwi)/ZH. The unusual aspect is the isospin dependence,
which has beea constructed 1) to give a (+) sign for the n
interaction, a (=) sign for the n interaction, and 0 for a n°.
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The true-exchange current is obtained by connecting either ¢n (= $n) to
nucleon 1 and the other one to nucleon 2; because the interaction is
symmetric in 1 and 2, we don't double count this way. We find

2
3. @ = -;%—(icl)x¥(2>)23<1)-Vxhoclg-;ll)ﬁz 3(2)-Vxh°(|5-;2|255)

which has the same isospin structure as 33G(5). We also note that this
process is lemiclasaica1(51).

The remaining contribution is fig. 19d. Because of its complex-
ity, and the fact that it is model dependent, our derivation will be
somewhat schematic. The A-isobar is a nucleon excited state with spin
and isospin 3/2 and positive parity, which we treat as a static part-
icle. The interaction depicted in fig. 19d corresponds to the electro-
magnetic creation of the isobar and its subsequent decay by pion
emissi-n. We have not shown the additional process with the opposite
time ordering, the electromagnetic interaction occurring last. The
transitisn from 1/2+ to 3/2+ can be magnetic dipole or electric
quadrupole, the latter being negligible. Current operators for magnetic
dipole processes have the form

3A(§) = vaﬁA(E), or HANY = -eIﬁA(g)-ﬁ(g)dax, vhere B is the magnetic

field. Assuming that the electromagnetic interaction occurs on nucleon
1, the basic process is represented in second-order perturbation theory
by

-fp ~
M) = g = M 13R-9,00x,)13/2 3/2Mpp<arz 372, 18,07 (xegy) 10,
Ma - (36)

where we have written the effective (nNA)-vertex as -(f/p)§z-31¢z(51)
in complete analogy with eqn. (22) (Eg is the NA transition=-"spin"
operator, which replaces 31 in eqn. (23)), the magnetic dipole
isovector (yNA)-vertex as pvao3(5-51)/zu in analogy with eqn. (20),
and the energy denominator is simply the negative of the A-nucleon mass
difference, =AM = =300 MeV. The only complexity in eqn. (36) is the



-37-

intermediate-state spin sum over the magnetic quantum numbers of both
spin and isospin (HA), which produces projection operators in the
nucleon spin and isospin space. We give these without proof; the spin-
projection operators for spin’'1/2 or 3/2 intermediate states are:

3 <5M‘|KO-V|JMI><JMI|§O-V‘|au>
M

1
R (37)
= <¥N'IPJI’aM><‘:’aIVzIJH><J’1|V2'|‘:¥> ’
vhere Ko and 30 are constant vectors,
Py/p = Ko-ﬁo + 1o-Zox§° , (38)
53/2 = Ko-ﬁo - 13-Kox§°/z , (39)

¥ and ¥° ace any (vector) nuclear operators aad G is the nucleon spin
operator. The isospin projection is analogous with 0+1. The derivation
is best performed using the Wigner-Eckart theorem in a brute-force manner.

We can now easily complete the derivation, using eqn. (39). The
second time ordering, not shown in fig. (19), is equivalent to the
Hermitian conjugate of eqn. (36). Using this we find

2

M, £ R
3 = 4M:zznﬁx{a%g-gl)[G(l)x%(z))zocx)xi’x-t.tz(zﬁxl&(z)
(40)
Vb, (gt (102))
vhere
A= <HRISZ213/2 W<3/2 AIpEIke 41)

is calculated for a proton (isospin component +4) with spin component
+h, Ening the z-component in both spin and isospin for the operators g
and ﬁA. Equation (40) is model independeant in the sense that only
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sngular moment.un arguments have been used in its construction. The
operators §" and “A were defined so that thev are dimensionless, as is
A, which contains all of the model dependence I[f we resort to the

quark model for the nucleon and isobar, we find

SR (42)

while the Chew-Low model of the isobar(sz) gives

A = = . (43)

Deriving eqn. (42) is an excellent exercise (hint: <S Zy = 4J3/5;
wp> = 2yi/5).

This completes our derivation of the pion-exchange currents. The
final result is

J ) =350 + 3, 0 + T . (44)

Another very good exercise is to verify that eqn. (21) holds for 3n'
with H replaced by OPEP.
D. Evidence for Exchange Currents

Most of the evidence for exchange currents centers cn magnetic
dipole processes, and in particular on static and transition magnetic
moments. We have already mentioned(27) the isovector magnetic
transition between the 331 deuteron and the 1So threshold state of the
np system. What about the deuteron magnetic moment? Because the
deuteron ground state is an isoscalar system, the (isovector) exchange
currents we derived earlier do not contribute. The currents due to the
exchange of positive and negative mesons exactly cancel; this is
precisely the meaning of isoscalar. Only those exchange currents of
(relativistic) order (1/c?) and hi%ggg contribute. Indeed, the deuteron

magnetic moment is usually written in the form

My = MO = JB(DI(uE-3) + bw, = 85774 (45)



where the numerical value is experimental, P(D) is the deuteron d-state
probability and Apd is the contribution from small relativistic cor-
rections of various types. It is worth noting that relativistic
corrections have an intrinsic ambiguity built into them; different
methods for calculating them give different operators. This doesn't
mean that observables, or matrix elements of these operators, are
ambiguous. They are not, because the same ambiguities are contained in
the nuclear potentials and the wavefunctions, and exactly cancel those
in the operator. The ambiguity is therefore nothing more than a
unitary transformation. It causes a complication in eqn. (45),
however, since both P(D) and Apd are affected by it, although the
ambjiguity in both terms can be mhown to cancelczl). It does make it
impossible to attribute any fundamental meaning to P(D); that is, it is
not measurable, and the division between the second and third terms in
eqn. (45) is artificial. Nevertheless, the scale of the corrections
(ud-p:)/p: is -.0251, and P(D)=3.9% satisfies eqn. (45) if we
arbitrarily set Apd to zero.

The trinucleons bave isospin 4, so that the magnetic moments can
be broken down into an isoscalar component (u.=p(3He)+p(3H)) similar to
the deuter . case, and an isovector component (pv=u(3He)-p(3H)). One
finds that'’3)

My = WO -2 (WO-7) + AW = 0.85131 (46)
and

"
b, = -p;[l-%l’s -SPp 140 +AU, = -5.10641 (47)

where Apo is a very small contribution from orbital angular momentum,
and Ap. and Apv represent corrections to the impulse spproximation. The
isoscalar part is nearly identical to the deuteron case, and PD-S.B%
produces equality between impulse approximation and experiment, when
Ap. vanishes. The isovector case is rather different. Using
reasonable values of Ps'-l% and Pp=10% produces Ay /po=-16.5%, compared
to Ap./p:H 5.4%. The scale nf the two corrections is different, as is
the sign.



-40-

The isoscalar discrepancy is consistent with a (large) correction
of relativistic order, while the isovector case is much larger, and is
indicative of nonrelativistic exchange currents. Note that the
absolute size of Apv would be comparable to the size of the impulse
approximation, were p; equal to 1, which is consistent with our
previously discussed rules of scale for exchange currents. The size of
the seagull part of the pion-exchange current is typically Apselu;=
=(14-15)%, or most of the discrepancy. The true-exchange and isobar
parts of the pionic current have opposite signs and typical values
Auv/pzz 2%, with the upper and lower signs referring to the true-
exchange and isobar contributions, respectively. The net theoretical
result is slightly too small, but dramatically illustrates the
importance of pion-exchange currents.

The analysis of the tritium p-decay matrix element is identical to
that of the isovector magnetic moment in impulse approximation. The
nuclear matrix elements are (1+3gxux), where the superallowed Fermi
part is 1, 8 is the axial vector coupling constant. and the Gamow-
Teller matrix element has the form

=1-9p - 2 -
IMy| = 1- gPg "= FP+ AM, = 1 - 0.042(8) (48)

where the numerical value is experimentll.(sa) Using our previous
estimate of probabilities we eltimate(z) AHA & 0.04(2). The size of
this correction is consistent with a relativistic correction and our
previous analysis that the impulse approximstion axial vector current
is class II, and has no nonrelativistic exchange currents.

Given the fact that the magnetic moments are very strongly
affected by pion-exchange currents, we should also expect that the
magnetic form factor, or Fourier transform of the magnetization
density, is similarly affected. This is indicated for *He in fig. 20
which shows three calculations by Hajduk, Ssuer, and Strueve(ag),
together with the data. The shape of Irm.'l as a function of the
momentum transfer, q, is a typical diffraction structure. The impulse
approximation (no exchange currents) based on the Paris potential has
its diffraction minimum at much too small a value of q. Including the
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exchange currents (lsbelled isobar model) moves the diffraction minimum
out toward the experimental results. Unfortunately, theoretical
uncertainties in how to deal with the nucleon form factors (the large
dots in fig. (19)) in the exchange currents lead to (at least) three
different prescriptions, two of which are indicated in the figure
(labelled F1 and GE)'

The problem is seen most clearly in the charge form factor, which
in impulse approximation has the structure

ig*
Fn(qz) = j'dar e £po(£) . (49)

The subscript "B" indicates that this is the "body" form factor, the
probability that, when one nucleon is struck and receives momentum g,
the recoiling nucleus is capable of reconstituting itself in the ground
state. That probability is rather small, because small momentum
components, rather than large, are most probable in a nucleus, which is
why form factors are always shown on semi-log plots! The most probable
reaction is for the struck nucleon to be ejected. But in "grabbing"
the nucleus the electromagnetic interaction must first grab a nucleon,
and that does not have unit probability, but rather GN(q')(SI), because
the nucleon has its own structure. In sccordance with accepted
probability practice one takes the product of the probability
distributions:

Py (a2 = 6Dy . (50)

In dealing with the pion-seagull exchang2 current, it is not known
which type of nucleon form factor, ON’ to use, the electric (charge)
form fnctorl(as) Fl or OE' or the axial vector form factor, GA'
Experiment would appear tc prefer Fl or GA (both are larger than GE)'
but the calculations are not sufficiently unambiguous to allow that
conclusion.

Similar results are evident in the ’H magnetic form factor
together vith new high momentum transfer data eagerly awaited for two

decudel(ss). The dashed curve is the impulse approximation and the



solid curve includes 8 variety of exchange currents. The agreement
between theory and experiment is rather good.

Just as long-stending discrepancies between theory and experiment
involving thermal np radiative capture pointed to exchange currents, so
did problems with thermal nd radiative capture (n+d+3H+y). In the
latter case, the capture rate vanishes in impulse approximation if one
assunaes that all the forces between nucleons are identical. 1In that
limit the (s-wave) ground state wavefunction is an eigenfunction of the
magnetic moment operator, and the matrix element vanishes by orthog-
onality. This greatly suppresses the doublet part of the decay rate,
which we see from eqns. (46) and (47) if we drop the leading order u:-
and p;-ternl. The remaining probabilities are now the overlaps of the
appropriate pieces of the two wavefunctions. In addition the decay can
also proceed from the quartet part of the nd state. Recent measure-
ments of the total rate summar.zed in ref. 2 give a cross-section of
.515(9) mb, 600 times small than the corresponding np case.

Extensive calculations by Torre and Goulard(se) have established
that in impulse approximation the quartet rate is 20 percent larger
than the doublet. The exchange currents lower the former by 20 percent
while raising the latter by 500 percent, increasing the impulse approx-
imation result of .2 mb to a total of .6 mb, in fairly good agreement
vith experiment. The seagull, isobar and true-exchange pionic currents
contribute roughly in the ratio 3:2:-1,

We have concentrated almost entirely on the long-range pionic
currents, motivated by the shape of the correlation function. 1Is this
adequate? There are a wide variety of short-range contributions, most
of which can be obtained from fig. 19 by replacing a pion propagator by
that of a heavy meson. Typically these contributions are 10-20 percent
of the pionic ones, at least for small momentum transfers, and their
calculation is much more model dependunt.

Finally, we show the charge form !nctorl(ss) of 3He and 3 in
figs. 22 and 23, together with the calculations of Hajduk, Sauer, and
Btrucvq(ag). The impulse approximation and the HS isobar model for 3He
are deficient in tha region of the secondary diffraction maximum. The
addition of ambiguous exchange currents of relativistic order improves
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the agreement. Unfortunately the "realistic" potential models which
are used to calculate wave functions don't have the correct form to
accomnodate relativistic corrections, snd the cancellations which must
take place to eliminate the ambiguity from matrix elements cannot take
place. The results for 3H are shown together with two calculations
using different (nonstatic) models of the m-nucleon vertex (PS and PV).
This model dependence partially reflects the ambiguity discussed above.
This is a murky and technically complex subject, which the interested
reader csn find discussed elsewhere(ZG).
E. Summary

We summarize by noting that in isovector magnetic dipole
processes, pion-exchange currents can make sizeable contributions.
Contributions from heavy-meson exchange are smaller, because nucleons
don't like to overlap at small separations. The dominant meson-
exchange effects occur in the isovector curreant operator, while small
(ambiguous) contributions can occur to the charge, isoscalar curreat,
and axial vector curreat operators.
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10.

11.

12.

13.

Jacobi coordinates (xl,yl,Bl) for trinucleon problem.

Comparison of centrifugal kinetic energy with the
MT-V potential (top) and partial-wave projected triton
correlation functions for that potential (bottom).

Configuration space regions for Nd scattering problem.

Faddeev wavefunction for quartet nd scattering, wl, plotted
versus x and y.

Schrddinger wavefunction component v., for 6=0° generated
from wl in fig. 4, plotted versus ad y.

The function at the top is approximated by the sum of 5
spline functions in the middle. The use of such splines
with a second-order differential equation leads to the
banded matrix shown at the bottom.

Schematic trinucleons with identical forces betweer protons
gnhnded) and neutronl in (a) and with different forces for
He in (b) and * in (c).

Calculated trinucleon (point nucleon) rms charge radii
decomposed into isoscalar (s) and difference (v) contribu-
tions in impulse approximation, together with data, plotted
versus corresponding binding energy. The 3He calculations
contained no Coulomb force.

Calculated trinucleon S°-state percentages plotted versus
corresponding binding energy.

Calculated trinucleon (point nucleon) rms charge radii in
impulse approximation, plotted versus corresponding binding
energy. The 3He calculations contained no Coulomb forcs.

3He Coulomb energy, E_, plotted, versus the corresponding
hyperspherical npproxfmation, E .

Various physical processes contributing to three-nucleon
forces. B8olid, dashed, chaded and double lines depict
nucleons, pions, isobars (nucleon excited states), and
heavy mesons, respectively.

Experintntul (x's) and theoretical charge densities for
3He. The theoretical curves correspond to 1nc1ud1ng or not
including a Coulomb force between the protons in 3He.
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14.
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16.

17.
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19.

20.

21I
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The spatially symmetric (S-state) component, u, of the
Schrodinger wave functica from a 5-channel RSC calculation
for 6=0°, plotted versus x and Yy.

The Faddeev wave function component, w?, vhich generated u
in fig. 14, plotted versus x and y.

Doublet nd and pd scattering lengths plotted versus SH and
3He binding energies, respectively. Individual points are
from theoretical calculations (triangles, squares, and
circles correspond to realistic two-body force models, the
additional inclusion of three-body forces, and unrealistic
two-body force models).

Scenario for probing three-nucleon forces with pd initial
state (a) becoming equilateral (b) and collinear (c) three-
body breakup configurations.

Two-body triton (isoscalar) correlation functions for the
RSC and AV14 potential models, together with the ranges of
various meson exchanges.

One-pion-exchange processes contributing to OPEP in (a),
and to the OPE currents in (b)-(d).

3He magnetic form factor, together with 3 calculations by
Hadjuk, Sauer, and Strueve.

’H magnetic form factor, together with 2 calculations by
Hadjuk, Sauer, and Strueve.

3He charge form factor, together with 3 calculations by
Hajduk, Sauer, and Strueve.

3H charge form factor, togethers with 2 calculations by
Hajduk, Sauer, and Strueve.
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